Learning Center

Off-Grid Homestead Powered by the Sun

This week’s solar project takes us westward down Interstate 40 to Williams, Arizona. Known as the “Gateway to the Grand Canyon”, Williams is a bustling tourist stop for those making that last pitstop before the northward trek to the Grand Canyon. Tourists are so excited and focused on seeing the Grand Canyon that no one notices the endless acres of ranch land on the way. Many of those subdivided ranches depend on solar power as their source of energy due to the remoteness of the area.

Read more

Arizona Couple Works Remotely in Solar Powered Travel Trailer

Living in a digital age, many people are abandoning the idea of burdening themselves with a mortgage and everything else that comes with home ownership. Working remotely over the web makes it easy to work from anywhere and see everything the world has to offer in the process. This is the case for Megan and Garrett who recently decided to move into their rig full time and travel to Arizona.

Read more

Solar Power Prepares Ohio Resident for Disaster

Our customer story this week features Susan from Ohio. Susan's neighbors have family in Puerto Rico. Back in 2017 Hurricane Maria devastated the entire island leaving their family in the dark. They lost the first level of their home and all electric power for several months. The realities of a natural disaster are a stark reminder on how everyone should be prepared and how the modern conveniences of everyday life can be taken away quickly.

Read more

Solar Powered Mobile Gaming Unit in NYC

Our next solar project feature takes us out to the East Coast to the Big Apple. Jesse, the owner of a MT45 Freightliner is needing solar energy for a unique venture. Dubbed the “M.G.U.”, this vehicle is a Mobile Gaming Unit taking to the streets of New York City. The vehicle was chosen specifically for its correlation to an ice cream truck, only this time it’s serving up delicious new games to hungry gamers in Times Square!

Read more

Desert Mobile Recording Studio Powered by Solar Electric

We are featuring a very cool project this week. Joachim is a fulltime RV’er that owns his own mobile recording studio. He bought an RV for his studio which needed a reliable power source. Once again, solar electric was the obvious choice for anything mobile. In February Joachim bought a 36’ long 2009 Fleetwood Terra with around 30k miles.

Read more

Customer Stories: Full-Time RVer Finds Freedom With Solar Power

This week’s article features Ed, a full time RV’er. Ed is a retired commercial industrial HVAC service technician that worked in Denver providing service to everything related to heating and cooling. After leaving the workforce, Ed started living in his RV fulltime in June 2017. He sold his 29’ travel trailer and purchased a brand new 39’ fifth wheel as his home in January 2018.

Read more

Customer Stories: Family Utilizes Residential Off-Grid Solar Power

Customer Stories: Family Utilizes Residential Off-Grid Solar Power

Our solar project this week features customer David G. of Northern Arizona. David and his family purchased property in the high desert of Northern Arizona to be closer to extended family. Their intention wasn’t necessarily to go off-grid with their power needs, however, the location where they purchased their property dictated solar to be their only power option. That’s when David researched solar power and ultimately contacted our team at Northern Arizona Wind & Sun.

Read more

RV Solar System Design for Full Time or Extended Dry Camping

RV Solar System Design for Full Time or Extended Dry Camping

When looking at what is an ideal full system configuration for an RV, typically one would want to consider the expectations of a system and limitations of the RV, and then build the system around these expectations and limitations. In most cases you want to start from the roof and work your way down. 

Solar for Roof

Roof space is usually the biggest limitation when considering solar power for an RV. Being that solar panels are one of the least expensive aspects of a complete system, maximizing production value for a given space is the most advantageous plan. In most cases putting as many panels on the roof as will fit is the best idea. Measure or use pieces of cardboard, targeting a sixty-cell panel format (~67”x40”). These are technically the best panels and the cheapest, due to the volume of sales these panels enjoy. Other panel sizes are available. Mixing sizes and shapes is complicated so plan wisely. We’ve never had a customer complain about having too much power (because this isn’t possible) but having too little power can result in too little energy production which may not meet your expectations. This can be frustrating and could lead to premature battery failure or other system wide issues. 

Inverter Integration 

Next you need to plan for an inverter if you need to run AC appliances and devices. The inverter converts power from the batteries to your basic household outlet AC power, 120VAC or 120/240VAC. You need to decide whether you want a fully integrated inverter system or a simple stand-alone inverter. In most cases, this decision will be dictated by what you want to power from the inverter. If you simply want to plug in a laptop or charge a phone from time to time, then a stand-alone inverter should work fine. Most of these smaller inverters will have an outlet on the front allowing low power devices to be connected. Anything more demanding than this requires a fully integrated inverter/charger.  These inverter/chargers have a built-in transfer switch and the ability to charge the batteries at a much higher current than a typical converter. These are advanced inverter/chargers with powerful features and thus are usually the best solution for medium to large installations. The inverter/charger is typically placed between the shore power input and the main electric panel, the output from this inverter would go to the main electric panel. This essentially will power up all or most of the electrical circuits within the RV, depending on the configuration of the electrical panel. When AC input power is present from either shore power or generator, the inverter/charger will qualify the input (making sure it’s acceptable) and transfer that power through. It will pull from the AC input dynamically depending on certain limitations to charge the batteries. When shore power or the generator are not present the inverter uses energy from the batteries to power the AC loads. There are many more advanced features available from this type of inverter/charger, but in general if you power to all the outlets and appliances like the micro wave or the air conditioner then an inverter/charger is the way to go. Special care needs to be taken if you wish the inverter/charger to power air conditioners. Air conditioners consume large amounts of energy and need careful planning. 

Battery Bank

The final step in a design is sizing the battery bank. An RV is a terribly abusive environment for batteries. It’s common to have significant deficit cycling (infrequent full charges), over discharge is very likely, and temperature can vary significantly. There are two types of batteries that work for an RV system; lead acid and lithium-ion. Lead-acid batteries include flooded batteries (AGM), or Gel. However, gel lead acid batteries are not designed for the demands present in a typical RV system.  

Lithium

Advantages

  • No maintenance

  • Lightweight

  • Can be placed inside the living space

  • Smaller size

  • Battery bank can be added to over time

  • Low chance of damage if left uncharged

  • Higher level of efficiency

  • Charges faster

Disadvantages

  • Cost- Lithium batteries are more expensive, however, over the life of the system Lithium is cheaper. 


AGM

Advantages

  • Low cost

Disadvantages

  • Larger and heavier than Lithium

  • It’s not recommended to add to a lead acid battery bank after it’s installed

  • Life is significantly reduced if they are left uncharged for any length of time


Flooded

Advantages

  • Cheapest battery option

Disadvantages

  • Must be placed in a vented enclosure designed to handle the gas fumes they create

  • Extremely heavy - it’s important to make sure that the location can handle the weight

  • Poorly suited to handle the abuse present in an RV system

  • Not recommended to add to their battery bank.

It’s important to have an accurate battery monitor installed in the system, one that uses a shunt. This will allow for accurate tracking of the battery state of charge. Regardless of the type of battery bank, this accessory can really help prevent excessive discharge and confirm regular recharging.

Talk to a Specialist

You can do all the research you want but some of the best recommendations you’ll get are going to come from experts in the industry. Northern Arizona Wind & Sun has several engineers on site happy to consult and design a system to suit your application, no matter how unique or complicated. Feel free to give us a call to discuss your project today. 


AC Transfer Switch Graphic

Do I Need an AC Transfer Switch for my Off-Grid System?

A lot of people assume they need a transfer switch for an off-grid system when they are using a generator to charge the batteries or power loads. If you are using an inverter/charger there is an internal transfer switch to select between the inverter’s output and an incoming AC source. Most inverter/chargers will remain in “Invert” mode unless they see an acceptable AC source coming through (Shore / Grid Power or Generator Power). Once the inverter/charger accepts the AC voltage, it transfers over to supply power to loads and dump excess power into the batteries. Once this AC source is disconnected, the inverter will transfer back to “invert” mode and use battery power to run the loads. Some inverter/chargers will accept two AC sources and transfer between either of those and the inverter’s output. So if this is how your system would be set up, then there is no need for an external transfer switch.

You may need an external transfer switch if you have an inverter/charger with only one AC input and you want to switch between two AC sources like a generator and shore/grid power. This is the case in most mobile/RV applications. Another scenario is when you have a generator that can deliver more power than the inverter/charger can pass through and you want to power some heavy loads. The inverter charger is limited by the rating of the internal transfer switch. For example: Let’s say we have a Schneider 3.8kW inverter/charger with an internal 30A transfer switch with a split phase 120/240VAC output. The max load we can run by passing the generator power through is 7.2kW (30A x 240VAC = 7200 W). If we had a load that exceeded this 7.2 kW, and we had a generator that was able to satisfy this load, we would want the inverter/charger to be bypassed, allowing the generator to power the load directly. In this event we could use an external transfer switch to select between the inverter’s output and the generator’s output. If the inverter/charger is properly sized, this scenario does not occur often.

For more info on this call Northern Arizona Wind and Sun 1-800-383-0195 or email sales@solar-electric.com.

Lithium Batteries: Are they worth the cost?

Lithium Batteries: Are They Worth the Cost?

Lithium batteries cost more up front, but in the long run they are superior to lead acid batteries for
several reasons. They are maintenance free, extremely efficient, safe, can be recharged very quickly,
and offer an expandable battery solution. Lithium batteries are cheaper long-term and are more
tolerant to infrequent full recharging and excessive discharging than their lead acid counterparts. They
make the best battery solution for high demand applications, where lead acid batteries do not and will
not survive.


Cost


On the surface, lithium batteries can appear too expensive, but we believe they are one of the best
investments one can make for their system. While the upfront costs for lithium may be higher than
other battery types, the associated benefits like longer service life, superior reliability and excellent
efficiency, will far outweigh the high initial cost. In just about all cases lithium batteries have a lower
cost per KWH per cycle. This means throughout their life cycle they will cost much less than other
batteries and thus will be the most economical solution in the long run, especially when compared to
that of high-quality lead acid batteries.


Maintenance


Many customers contemplating the switch to lithium will be replacing an existing lead acid battery bank
of some type. A flooded lead acid battery bank will require a significant amount of maintenance
throughout its life to stay healthy. Poor maintenance is a leading cause of premature failure for flooded
lead acid batteries. The electrolyte level should be checked regularly to prevent the battery from
running dry, and the battery must be filled with distilled water when electrolyte levels are low. Checking
the specific gravity from time to time is needed to guarantee the batteries are fully charging.
Additionally, the battery must be equalized when the electrolyte starts to stratify to maintain efficiency.
These common maintenance procedures can become mundane and are often forgotten, which can
cause a flooded lead acid battery to fail early. A lithium battery is completely maintenance free,
eliminating the need to add water, check specific gravity, or equalize charge.


Tolerance


Another significant contributor to premature failure of lead acid batteries is excessive discharge and
deficit cycling. Regardless of whether you have a flooded, AGM, or Gel type battery, a 50% depth of
discharge (DOD) limit should be observed in order to prolong their life cycle. Deficit cycling is also very
harsh on lead acid batteries. This happens when a battery is discharged before having the chance to fully
recharge. Plate swelling, loss of active material, and sulfation of the plates can be caused by excessive
discharge and/or lack of full recharge. To achieve the longest life possible, it’s very important not to
over discharge lead acid batteries and to make sure they get completely recharged every cycle.
Unfortunately, this can be difficult to manage, and you may find yourself constantly worrying about your
battery health. Lithium batteries are a worry-free alternative. It’s not necessary to fully recharge lithium
batteries every cycle and most have internal protections within the battery that will never allow you to
discharge down to the point of permanent damage. Generally, you can discharge most lithium batteries
to about 20% remaining capacity every day without shortening cycle life. Lithium batteries can also be
fully discharged periodically without significant adverse effects. You can use them, abuse them, and they
will suck up the energy you give them and spit it right back.


Efficiency

In several applications (especially off-grid solar), energy efficiency is of crucial importance. The typical
round-trip energy efficiency (discharge from 100% to 0%, then back to 100% charge) of a brand-new
lead acid battery is around 80%. The round-trip energy efficiency of a lithium battery is 92-98%
throughout the entire life of the battery. The charging process of lead acid batteries becomes
particularly inefficient once the absorption state of charge has been reached. This can result in
efficiencies of 50% or even less in systems with oversized battery banks or failing batteries. As a lead
acid battery ages, internal resistance builds up and the battery bank becomes even less efficient, causing
more and more energy to be converted into heat rather than stored within the battery bank. As lithium
batteries age, usable capacity is reduced but the efficiency is still maintained.


Charge Time


In most cases lithium batteries can take on more power than can be delivered to them. Charge and
discharge current limits for lithium batteries are often portrayed as capacity scalars. For example, most
lithium batteries can be discharged and recharged at a continuous rate of .5C or half the overall
capacity. Some manufacturers rate their batteries with a discharge and recharge limit of 1C. In this case,
a lithium battery can be completely charged in just one to two hours from 0%. It’s also important to
note that a lithium battery is usually between 95%-99% full charge after the completion of the bulk
charge stage. In contrast, most lead acid batteries shouldn’t be charged at a rate greater than .2C, and
the battery will achieve a maximum of only 75%-80% full charge once the bulk charge stage is finished.
After this, an additional 3-4 hours of absorption charge is necessary to fully recharge most lead acid
batteries.


Safety (BMS)


The safety and reliability of lithium batteries is a big concern, so nearly all lithium battery solutions will
use an integrated Battery Management System (BMS). The BMS is a system that monitors, evaluates,
balances, and protects cells from operating outside the "Safe Operating Area". The BMS is an essential
safety component of a lithium battery system, monitoring and protecting the cells within the battery
against over current, under/over voltage, under/over temperature, and more. Another essential
responsibility of the BMS is to balance the pack during charging, guaranteeing all cells receive a full
charge without overcharging.


Expandability


One of the most significant advantages of lithium batteries over that of a lead acid alternative is that
lithium battery banks can be expanded throughout the life of the battery. This is not an acceptable
practice for lead acid batteries as the result usually ends in significant premature failure of the whole
battery bank. Being that lithium batteries don’t suffer from lack of full recharge or deficit cycling
amongst other things; the addition of new batteries simply increases the storage capacity and reduces
the load on the rest of the batteries. In most cases, this will increase the life of the battery bank. Thus,
making for a whole lot more flexibility in the design on an off-grid system and can allow one to build up a
system as needed and as a budget allows.

Federal Solar Tax Credit

Federal Solar Tax Credit

The 30% credit will only last only through 2019. In 2020, it drops down to 26% and down to 22% in 2021 and in 2022 there will no longer be a tax credit for residential systems. However, there will still be a 10% credit for commercial projects only.

Read more

Solar Energy Tax Incentives by State

Solar Energy Tax Incentives by State

If you’re looking to go solar for your home or business, you should know that there are incentives that help offset the investment. These are both at the national and state level and include tax incentives and favorable policies that make it easier for residents to adapt to solar energy. We’ve put together a few examples for each state, with the total number of incentives listed in parenthesis. For a comprehensive list visit http://www.dsireusa.org/.

Read more

LG NeON 2 Solar Module

LG NeON 2 Solar Module

LG’s NeON™2 solar panel is one of the most efficient commonly available 60-cell modules on the market. LG considers the fact that the amount of energy generated by solar panels differs from day to day due to factors such as weather, temperature, and shading. This is why they create their solar panels with quality and efficiency in mind.

Read more

Solartech Power Products

Solartech Power Products

Solartech modules employ the best quality cells from Solartech's own cell lineup. Combined with superior material and Taiwanese workmanship, Solartech modules will meet and exceed the durability and performance requirement whether they are for residential, commercial or utility projects. Solartech modules are TUV, ETL, and UL certified.

Read more

E Panels

E Panels

The Magnum E-Panels made by Midnite Solar come with an inverter breaker, 2/0 inverter cables, pre-wired AC input and bypass, 500amp 50mV shunt, AC terminal blocks, 100 amp DC positive and DC negative bus bars, PV input bus bar, din rails, 3 panel mount breaker knockouts, Ground bus bar, DC wiring cover, top shield, remote display mounting bracket, wall mounting brackets, charge controller bracket and lots of hardware and grommets.

Read more

Exeltech Sine Wave Inverters

Exeltech Sine Wave Inverters

Exeltech inverters have an MTBF (mean time between failure) in excess of 20 years and offer the most competitively priced ultra-reliable true sine inverters available anywhere. Exeltech provides back up power for the communications room in every U.S. Embassy, worldwide.

Read more

Samlex Sine Wave Inverters

Samlex Sine Wave Inverters

The Samlex America name is synonymous with power supply value. Since 1991, Samlex has manufactured and distributed power supply products to more than 90 countries worldwide. Innovative product designs, strict quality control, and responsible after-sales service provide customers with high-quality power conversion products at extremely competitive prices.

Read more

Fronius Grid-Tie Inverters

Fronius Grid-Tie Inverters

The latest and greatest Fronius grid-tie inverters are the IG Galvo and Primo lines, which are fully NEC 2014 and UL compliant. They come with built-in ground fault protection, DC reverse polarity protection, islanding protection, over temperature protection, and arc-fault circuit protection.

Read more

Enphase Microinverters

Enphase Microinverters

The Enphase Energy Solar Micro-inverter system is a set of small units that connect directly to each solar module to convert DC power into grid-compliant AC power and transmits valuable performance data on each module to the system owner.

Read more

Conext XW+ Sine Wave Inverters and Accessories

Conext XW+ Sine Wave Inverters and Accessories

A Conext XW solar system provides up to 36 kW by using modular components. All components communicate with each other with out‐of‐the‐box network capability. They include the Conext XW Inverter/Chargers, the Solar Charge Controllers, the Conext XW Automatic Generator Start (AGS), and the Conext XW System Control Panel (SCP).

Read more

What are MC Connectors and Cables?

What are MC Connectors and Cables?

MC connectors are specially designed for low contact resistance and good stable connections under a wide range of conditions. MC means "multi-contact." The term "multi-contact" comes from the fact that the connectors have a bunch of little spring loaded gold plated fingers that ensure good contact.

Read more

RV Solar Power FAQ

RV Solar Power FAQ

Numerous charts and lists have been published with long lists of appliances and how much power they draw. You are then supposed to add up all the watts, then find out how many hours of sun you get, etc etc.

Read more

Inverter Basics and Selecting the Right Model

Inverter Basics and Selecting the Right Model

We carry many types, sizes, brands, and models of inverters. Various options are also available. Choosing which one is best from such a long list can be a chore. There is no "best" inverter for all purposes - what might be great for an ambulance would not be suited for an RV.

Read more

Preassembled & Tested Inverter Systems

Preassembled & Tested Inverter Systems

Northern Arizona Wind and Sun can custom build almost any kind of off-grid or grid-tie inverter power panel. We can also mix and match different brands of equipment if you prefer something different than what we specify. These systems are very easy to customize to your specifications.

Read more

What is Maximum Power Point Tracking (MPPT)

What is Maximum Power Point Tracking (MPPT)

An MPPT, or maximum power point tracker is an electronic DC to DC converter that optimizes the match between the solar array (PV panels), and the battery bank or utility grid. To put it simply, they convert a higher voltage DC output from solar panels (and a few wind generators) down to the lower voltage needed to charge batteries.

Read more

Solar Charge Controller Basics

Solar Charge Controller Basics

A charge controller or charge regulator is basically a voltage and/or current regulator to keep batteries from overcharging. It regulates the voltage and current coming from the solar panels going to the battery. Most "12 volt" panels put out about 16 to 20 volts, so if there is no regulation the batteries will be damaged from overcharging.

Read more

What is Lithium Battery Technology?

What is Lithium Battery Technology?

Lithium batteries stand apart from other battery chemistries due to their high energy density and low cost per cycle. However, "lithium battery" is an ambiguous term. There are about six common chemistries of lithium batteries, all with their own unique advantages and disadvantages.

Read more

Deep Cycle Battery Types Comparisons

Deep Cycle Battery Types Comparisons

There is more to comparing batteries than just cost or amp-hour ratings. For example, based only on cost, the Concorde AGM's do not look so good. On the other hand, you probably would not want to store a flooded battery in your computer room. There is no one best battery for all applications.

Read more

Deep Cycle Battery FAQ

Deep Cycle Battery FAQ

The subject of batteries could take up many pages. All we have room for here is a basic overview of batteries commonly used in photovoltaic power systems. These are nearly all various variations of Lead-Acid batteries. For a very brief discussion on the advantages and disadvantages of these and other types of batteries...

Read more

Solar Power Technical Tips and Nice to Know Information

Solar Power Technical Tips and Nice to Know Information

You often see inverters rated in volt-amps (VA or va) instead of watts. For a perfect resistance, such as a heating element, watts and VA are essentially the same. However, many appliances, especially motors, are not a "perfect" load. Thus, the watts actually used may be less than the VA - but the inverter sees the VA. The motor or appliance may be using only 100 watts, but the inverter sees an "apparent" power of 150 VA.

Read more